• Effects of native and invasive Prosopis species on topsoil physiochemical properties in an arid riparian forest of Hormozgan Province, Iran

    分类: 生物学 >> 生态学 提交时间: 2022-11-08 合作期刊: 《干旱区科学》

    摘要:Biological invasions can alter soil properties within the range of their introduced, leading to impacts on ecosystem services, ecosystem functions, and biodiversity. To better understand the impacts of biological invasions on soil, we compared topsoil physiochemical properties at sites with invasive alien tree species (Prosopis juliflora), native tree species (Prosopis cineraria, Acacia tortilis, and Acacia ehrenbergiana), and mixed tree species in Hormozgan Province of Iran in May 2018. In this study, we collected 40 soil samples at a depth of 10 cm under single tree species, including P. juliflora, P. cineraria, A. tortilis, and A. ehrenbergiana, as well as under mixed tree species. The results showed that organic matter, moisture, potassium, calcium, nitrogen, and magnesium in topsoil at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria were higher than that at sites where P. juliflora was present (P<0.05). Sodium at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria and P. juliflora was lower as compared to that at sites with just A. tortilis and A. ehrenbergiana. Electrical conductivity was lower at sites with A. tortilis and A. ehrenbergiana growing in combination with P. cineraria, and it was higher at sites with mixed Acacia and P. juliflora trees. Based on the generally more positive effect of native Acacia and P. cineraria on topsoil physiochemical properties as compared to the P. julifora, afforestation with native tree species is preferable for soil restoration. In addition, due to the negative effects of P. julifora on soil properties, P. julifora spread should be better managed.

  • Effects of dieback on the vegetative, chemical, and physiological status of mangrove forests, Iran

    分类: 生物学 >> 生态学 提交时间: 2023-11-13 合作期刊: 《干旱区科学》

    摘要: Mangrove forests are valuable resources in tropical and subtropical regions, which have been faced dieback due to various human activities including rapid expansion of shrimp farming, urban development, and pollution, as well as natural factors such as rising sea level, increasing air temperature, drought, and sharp decrease in rainfall. However, the mechanisms of dieback of mangrove forests are not well understood. Therefore, this research aimed to assess the vegetative, chemical, and physiological status of grey mangrove (Avicennia marina (Forsk.) Vierh.) forests at different intensities of dieback in the Hormozgan Province, Iran. A total of 40 plots categorized into four dieback intensities (severe, medium, low, and control) were randomly selected for monitoring, and various parameters related to vegetative, chemical, and physiological status of grey mangrove forests were examined. The results revealed that the control group had the highest tree density, seedling density, vitality levels, aerial root density, and aerial root height. Generally, as dieback severity increased, a decrease in demographic and vegetative parameters of trees and seedlings was observed in the dieback treatments. The amounts of heavy metals (lead, cadmium, and nickel) in the sediment, roots, and leaves of grey mangrove trees at different dieback levels indicated that lead levels were the highest in the sediment, roots, and leaves in the severe dieback treatment. At the same time, the control had the lowest values. Cadmium concentrations in the sediment followed the pattern of severe dieback>moderate dieback>low dieback>control with no significant differences in the roots and leaves. Nickel amounts in all three parts, i.e., sediment, roots, and leaves showed the highest levels in the severe dieback treatment. Furthermore, metal level analysis in the organs of grey mangrove trees at different dieback levels revealed that lead and nickel were more abundant in the root organ compared with the leaves. In contrast, the leaf organ exhibited the highest cadmium levels. Dieback significantly impacted water electrical conductivity (EC), soil organic carbon (SOC), and chlorophyll a, b, and total chlorophyll contents, with the highest values observed in the severe dieback treatment. However, no significant differences were observed in acidity and carotenoid levels. In conclusion, sediment erosion and heavy metal accumulation were critical contributors to dieback of grey mangrove trees, affecting their physiological, vegetative, and plant production characteristics. As the ability of these plants to rehabilitate has diminished, effective management planning is imperative in dieback-affected areas.